MetelecTM

Data Sheet TELLURIUM COPPER - C109/CW118C

C109/CW118C is a free machining tellurium containing alloy that retains the high conductivity values associated with pure copper. The machining characteristics of the copper are significantly improved by alloying it with approximately half per cent of tellurium, while the electrical and thermal conductivity are only slightly reduced.

The tellurium forms a small precipitate that is evenly distributed throughout the microstructure and acts as a chip breaker causing the swarf to break into short pieces. The alloy offer a machinability rating of ~90% (free cutting

al Dhu

brass=100) versus a standard copper machinability rating over ~20%. This allows the C109/CW118C to be machined at a much higher speed with lower tool wear, giving machinists and designers a more cost effective product.

Tellurium copper is manufactured by refining, melting and casting the material into billets for the manufacture of the final product. It is essential that any oxygen is eliminated at this stage to give a resistance to hydrogen embrittlement and prevent any oxygen combining with tellurium that would make the copper brittle.

	2	
Free Machinability		
Freedom for Hydrogen Embrittlement		
Very Good thermal conductivity		
Related Specifications:		
C109	C14500	
CW118C	CuTe	
DIN 2.1546		
Chemical Composition:		
Copper	Rem	

Excellent electrical conductivity

Tellurium	0.4 - 0.7%
Phosphorus	0.003 - 0.012%
Total Imps	0.01% max

Typical Uses:

Key Features:

Traditional uses for C109/CW118C Tellurium Copper are electrical components that require extensive or intricate machining including electrical switches for power semi-conductors, transformer and circuit breaker terminals, gas cutting nozzles, contacts, clamps, electrical connector pins, bolts, nuts, studs and other components requiring free machinability.

Melting point	1081°C
Density	8.94 g/cm ³
Specific heat	385 J/Kg °K
Thermal conductivity	370 W/m°C
Thermal expansion coefficient (20 - 200°C)	17.0 x 10 - 6 per °C
Electrical conductivity	94% IACS
Electrical resistivity	0.0187 microhm/m
Modulus of elasticity	12 500 N/mm ²
Fabrication Properties:	
Hot working temperature range	728 - 825°C
Hot formability	Good
Cold formability	Good
Cold reduction between anneals	70% max
Stress relieving temp. Range	150 - 200°C
Joining Methods	
Soldering	Excellent
Brazing	Good
Oxy-acetylene welding	Not recommended
Gas-shielded arc welding	Fair
Resistance welding: Spot and seam butt	Not recommended - Fair